If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28y^2+8y=0
a = 28; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·28·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*28}=\frac{-16}{56} =-2/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*28}=\frac{0}{56} =0 $
| 12x²=649 | | 7=−6x+5 | | -2x+10=x | | -4a+3=7a-74 | | 180=9x+2+15x-52 | | 2z-18+2z-10+2z-8=180 | | 23x,x=75 | | -6(-6x-8)=24 | | 38+56+x-38=180 | | (18x+4)=(15x-52) | | k-⅖=-9½ | | 0.67x-5=10 | | 8x+8=8x+ | | 30-q=17 | | 21 x+4=9 | | (2)9x+2)=(15x-52) | | 4x,x=9 | | 4y-1(y-2)=0 | | 38+56+38x=180 | | 2j+60=-36 | | S−3|2x+6|=−12 | | x(-9.2)=7.5 | | 1080=143+152+116+125+140+139+3x | | 4(7^x)=32 | | 11+x+5=x | | x•(-9.2)=7.5 | | 7r+4.5-2r=24.5 | | 2x+3+x-4=32 | | 5x–6=7x–20 | | 4(x+2)-3(2x-4)=120 | | -4.4a-2=-5.5a-4.2 | | |4x-10|=18 |